ОЦЕНКА ПАРАМЕТРОВ QAM СИГНАЛОВ N-OFDM В БАЗИСЕ ФУНК-ЦИЙ ХАРТЛИ ПРИ ИХ ДОПОЛНИТЕЛЬНОМ СТРОБИРОВАНИИ

Слюсар В.И.¹, Васильев К.А².

Научный руководитель: доктор техн. наук, проф. Слюсар В.И.

Военный институт телекоммуникаций и информатизации Национального технического университема Украины "Киевский политехнический институт",

кафедра военных телекоммуникационных и транспортных систем и сетей» ул. Зеньковская, д.44, г. Полтава, 36009, Украина e-mail: 1 swadim@inbox.ru, 2 kostya vas@rambler.ru

Abstract — The algorithm of determination of frequency responses of signals in basis of functions Hartley with use of operation of an additional gating is considered.

1. Введение

Для повышения пропускной способности линий связи, как известно, может использоваться метод неортогональной частотной дискретной модуляции (N-OFDM). Поскольку преимущества данного метода проявляются при большом числе каналов, вычислительная сложность с учётом использования теории комплексных чисел является существенной. Применение преобразования Хартли (ПХ) позволяет обойтись без использования комплексных чисел и, как следствие, снизить вычислительные затраты и упростить аппаратную реализацию метода N-OFDM.

2. Основная часть

Основная идея метода N-OFDM на основе преобразования Хартли была изложена авторами ранее в [1]. Недостатком данной работы является то, что в основе формирования сигналов N-OFDM лежит применение РАМ модуляции, что существенно ограничивает применение метода N-OFDM на основе ПХ в технике связи. Переход к более эффективному методу модуляции QAM требует разработки алгоритмов определения амплитуды и фазы вещественных сигналов в базисе функций Хартли. При этом целесообразно использовать операцию дополнительного стробирования отсчётов аналого-цифрового преобразователя (АЦП), позволяющую, как отмечено в [2], снизить требования к производительности вычислительных устройств. Кроме этого, данная процедура обеспечивает представление гармонического вещественного сигнала в виде двух вещественных квадратур.

В докладе приведено решение задачи определения амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик сигналов в базисе функций Хартли с использованием операции дополнительного стробирования. При этом сделано допущение, что на вход АЦП было подано непрерывное гармоническое колебание, которое на выходе АЦП может быть описано выражением: $U_{\rm S}=a\cdot\sin(2\pi f\cdot\Delta t\cdot s+\phi)$, где $U_{\rm S}$ - напряжение сигнала на выходе АЦП, а - амплитуда, f - частота сигнала, ϕ - начальная фаза, Δt период дискретизации АЦП, s — текущий номер отсчета АЦП.

Запишем алгоритм дополнительного стробирования для вещественного аналогового сигнала в пространстве функций Хартли для чётных и нечётных составляющих, используя аналогию с [2]:

$$U_{i}^{c} = \sum_{s=1}^{N} U_{s} \cdot cas\left(\frac{\pi}{2} \cdot s\right), \quad U_{i}^{s} = \sum_{s=1}^{N} U_{s} \cdot cas\left(-\frac{\pi}{2} \cdot s\right) \quad (1)$$

где і - текущий номер отсчета квадратур, N - количество суммируемых отсчетов АЦП, $cas(\theta) = cos(\theta) + sin(\theta)$ - функция Хартли.

Результатом выражений (1) являются отсчёты двух квадратур, по которым несложно получить оценки амплитуды и фазы QAM сигналов, используя следующие формулы:

$$a = \sqrt{\frac{2}{T \cdot N} \sum_{i=1}^{T/N} \left[\left(U_i^c \right)^2 + \left(U_i^s \right)^2 \right]} \quad \varphi = \sqrt{\frac{N}{T} \sum_{i=1}^{T/N} arctg \left(\frac{-U_i^s}{U_i^c} \right)} \quad (2)$$

где T - количество отсчетов на выходе АЦП.

Данные оценки позволяют войти в сигнальное созвездие QAM модуляции и демодулировать символы переданного сообщения.

На рис.1 показаны зависимости АЧХ и ФЧХ процедуры дополнительного стробирования на основе ПХ с использованием выражений (1) и (2).

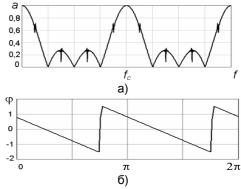


Рис.1 — Зависимость а) – амплитуды, б) – фазы от частоты при использовании процедуры дополнительного стробирования в базисе функций Хартли

3. Заключение

Таким образом, разработан алгоритм определения амплитуды и фазы вещественных сигналов с QAM модуляцией в базисе функций Хартли с использованием операции дополнительного стробирования. Такой подход предложен впервые. Его применение позволит усовершенствовать методы цифровой обработки сигналов, в основе которых используются операции с вещественными числами.

4. Список литературы

- [1] Слюсар В.И., Васильєв К.А. Метод неортогональной частотной дискретной модуляции сигналов на основе базисных функций Хартли. //Сб. материалов 2-ого Международного радиоэлектронного форума. Том 4. Харьков: ХНУРЭ. 2005. С. 224 226.
- [2] Slyusar V.I. Synthesis of algorithms for measurement of range to M sources with the use of additional gating of the ADC readings.// Radioelectronics and Communications Systems. - Vol. 39. - no. 5. - 1996. - P. 36 – 40.

4-я Международная молодежная научно-техническая конференция «Современные проблемы радиотехники и телекоммуникаций РТ-2008»